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Brief Abstract. 

Bichsel, proposes an analytics maturity model used to evaluate the progress in the use of academic and 

learning analytics. In the progress, there are positive results but, most institutions are below 80% level. 

Most institutions also scored low for data analytics tools, reporting, and expertise” [1].  In addition, a 

task with the methods of Data Mining and Learning Analytics is analyze them (precision, accuracy, 

sensitivity, coherence, fitness measures, cosine, confidence, lift, similarity weights) for optimize and 

adapt them [4]. Learning Analytics was and continues to be an emerging technology [2]. The time to 

adoption Horizon is one year or less but, how many institutions, teachers, learners and data analytics 

tools, are ready?  

Statistical Implicative Analysis (SIA) was created for Regis Gras [7], 45 years ago, SIA is a statistical 

theory which provides a group of data analytics tools to extract knowledge. The approach is performed 

starting from the generation of asymmetric rules [3] similar to dendrograms used in the hierarchical 

clusters [6]. But, the asymmetric rules can be used like a hierarchical clusters? An intuitive 

approximation between asymmetric rules and hierarchical clusters was given in [5]. The principal aim 

of this paper is to give mathematical issues of asymmetric rules to hierarchical clustering in Learning 

Analytics. 
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