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Our aim is to model inter-failures times that are correlated and not iden-
tically distributed, taking into account covariates. There is a constant need
to get reliability models with the first two properties. And, to the best of our
knowledge, the introduction of covariates is a pending task. The Markovian
Arrival Process (MAP) [5] is an active research field for dealing with not
identically distributed and correlated inter-failures times ([1], [2], [3]). Our
approach is based on the work developed in [1] and [6] for the case without
covariates.

We illustrate our approach with a set of simulated data of devices undergoing
three failures each one (Figure 1). It is simulated a sample of operational
random times for 100 devices with three failures for each one. The devices
are independent. The sample is
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where in each device we have the times of the three failures, and two covari-
ates: age and device class, with two possibilities: class 1 and class 0. Now
let Tk be the random variable representing the operational time between the
(k–1)–th failure and the k–th failure. We have three variables T1, T2, T3 of
the inter–failure times, correlated and not identically distributed (Figure 1).
If covariates are not taken into account, the methodology from [1] works, as
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Figure 1: Device with three failures

expected. We apply a 2–state non–stationary Markovian Arrival Process to
our data, denoted by MAP2. It is a doubly stochastic process {J(t), N(t)}
where

• J(t) represents an irreducible, continuous, Markov process with state
space S = {1, 2}.

• The counting process N(t) represents the number of failures in the
interval (0, t].

• The initial state i0 ∈ S is generated according to an initial probability
α = (α, 1− α).

The MAP2 can be characterized by M = {α, D0, D1} where D0 and D1 are
rate matrices. D = D0 +D1 is the generator of J(t), with stationary vector
φ, calculated as φP ∗ = φ. P ∗ is the transition probability matrix, given by
P ∗ = (−D0)

−1D1. The cumulative density function (CDF) and the moments
of the variables T1, T2 and T3 are defined by the expressions

FTk(t) = 1− αkeD0te

where αk = α(P ∗)k−1 and Tk ∼ PH{αk, D0} represent different phase–type
distributions for the correlated variables T1, T2 and T3.

The goal is to estimate the model parameters in {α̃, D̃0, D̃1} in the MAP2.
For this it is used an optimization problem (P) [6]:

min γτ (α̃, D̃0, D̃1)

s.t. x̃, ũ ≤ 0

ỹ, ṽ ≤ 0

−x̃− ỹ ≥ 0
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−ũ− ṽ ≥ 0

0 ≤ α̃ ≤ 1

where the objective function of the problem is given by

γτ (α̃, D̃0, D̃1) = τ
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made of the model population moments and their empirical counterparts, and
where τ is a penalty parameter that needs to be tuned, but setting τ = 1
performs well in practice [6].

The problem is solved using the local search MATLAB’s routine fmincon
(Optimization toolbox). A multistart approach (100 different starting points
randomly selected of the simulated data) is performed and we keep the solu-
tion with the minimum objective function γτ (α̃, D̃0, D̃1) in the optimization
problem (P).

We solve the problem (P) for two canonical representations of the MAP2

• The expression of the first canonical representation is
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• The second canonical representation
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and we select the estimated parameters {α̃, x̃, ỹ, ũ, ṽ} under the canonical
representation with the highest log–likelihood given in

logf(t(1), t(2), . . . t(N)|D0, D1) =
N∑
i=1

logf(t(i)|D0, D1). (4)
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To introduce covariates, we have been inspired by our previous work [4] that
worked successfully. The way to the present work will be justified in detail
during the conference and in an eventual extended paper. The essential idea
is to use the covariate information in order to modify the matrices D̃0 and
D̃1 in a suitable manner.
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