Abstract

In recent decades there have been profound social, economic and technological changes have led to a new model of urban mobility. That model, which tends to be implemented globally, is characterized by the increase in average distances travelled, changes in the grounds for the displacements and changes in the location of production activities. In modern economies is essential that suitable transport that enables the population mobility and the consequent accessibility to services. However, its current configuration is causing strong negative externalities and generates much of the problems of environmental, social and energy sustainability.

The changes required by the current unsustainable configuration should be based on a new vision of transportation and the development of theoretical and empirical criteria that enable the creation of sustainable transport systems. Such a system must be based on the principle of multimodal transport.

The purpose of this paper is to analyze the most important factors of urban mobility in its current configuration, analyze the negative externalities caused by the transportation, and develop the principles necessary to develop a model in which the modal distribution is optimized in a city in a way that is sustainable, both in terms of passengers and freight.

To do this, in the Decision Theory, it has been selected Analytic Hierarchy Process (AHP) technique to support different stages of the proposed methodology. This technique allows by building a hierarchical model, efficiently and graphically, organizes information about a problem, break it down and analyze it by parts in different matrix, visualize the effects of changes in levels and synthesize.

Keywords: Urban transport, AHP methodology, sustainability, energy efficiency.